Система очистки почвы от тяжелых металлов. Методы очистки сельскохозяйственных земель. Ее избыток вызывает тяжелые пищевые расстройства

Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

При загрязнении почв и растительности тяжелыми металлами используют такие приемы :

1) Ограничение поступления тяжелых металлов в почву . При планировании применения удобрений, мелиорантов, пестицидов, осадков сточных вод необходимо учитывать содержание в них тяжелых металлов и буферную емкость используемых почв. Ограничение доз, обусловленное экологическими требованиями, является необходимым условием экологизации земледелия.

Поступление тяжелых металлов в растения может быть уменьшено за счет изменения питательного режима, при создании конкуренции за поступление в корни токсикантов и катионов удобрений, при осаждении тяжелых металлов в корне в виде труднорастворимых осадков.

2) Удаление тяжелых металлов за пределы корнеобитаемого слоя достигается следующими приемами:

Удалением загрязненного слоя почвы;

Засыпкой загрязненного слоя чистой землей;

Выращиванием культур, поглощающих ТМ и удалением с поля их растительной массы;

Промывкой почв водой и водорастворимыми (чаще органическими) соединениями, образующими с тяжелыми металлами водорастворимые комплексные соединения, в качестве органических лигандов используют продукты из отходов с/х производства;

Промывкой почв раствором для выщелачивания ТМ из верхних горизонтов на глубину 70-100 см и затем осаждения их на этой глубине, в виде трудно растворимых осадков (за счет последующей промывки почв реагентами, содержащими анионы, образующие с тяжелыми металлами осадки).

3) Связывание ТМ в почве в малодиссоциируемые соединения . Уменьшение поступления тяжелых металлов в растения может быть достигнуто их осаждением в почве в виде осадков карбонатов, фосфатов, сульфидов, гидроокисей; с образованием малодиссоциирующих комплексных соединений с большой молекулярной массой. Наилучшим способом, обеспечивающим существенное снижение содержания тяжелых металлов в растениях, является совместное внесение навоза и извести. Наиболее эффективными мероприятиями, приводящими к снижению подвижности свинца в почвах, является глинование (внесение цеолита) и совместное внесение извести и органических удобрений. Применение полного комплекса химических мелиорантов (органических и минеральных удобрений, извести и органики) на 10-20% снижает в почве содержание поливалентных металлов.

4) Адаптивно-ландшафтные системы земледелия, как фактор оптимизации экологической обстановки при загрязнении почв ТМ.

Различные виды и сорта культур накапливают в растительной продукции неодинаковое количество ТМ. Это обусловлено селективностью к ним корневых систем отдельных растений и особенностью их процессов метаболизма. ТМ в большей степени накапливаются в корнях, меньше в вегетативной массе и генеративных органах. При этом отдельные группы культур селективно накапливают и определенные токсиканты. Подбор культур для выращивания на почвах определенной степени и характера загрязнения является наиболее простым, дешевым и достаточно эффективным способом оптимизации использования загрязненных почв.


Фиторемедиация

Микроорганизмы не способны удалять из почвы и воды вредные для здоровья людей тяжелые металлы (мышьяк, кадмий, медь, ртуть, селен, свинец, а также радиоактивные изотопы стронция, цезия, урана и другие радионуклиды. Растения способны извлекать из окружающей среды и концентрировать в своих тканях различные элементы. Растительную массу не составляет особого труда собрать и сжечь, а образовавшийся пепел или захоронить, или использовать как вторичное сырье.

Метод очистки окружающей среды с помощью растений был назван фиторемедиацией – от греческого "фитон" (растение) и латинского "ремедиум" (восстанавливать).

Фиторемедиация - комплекс методов очистки вод, грунтов и атмосферного воздуха с использованием зеленых растений.

История

Первые простейшие методы очистки сточных вод - поля орошения и поля фильтрации - были основаны на использовании растений.

Первые научные исследования были проведены в 50-х годах в Израиле, однако активное развитие методики произошло только в 80-х годах XX века.

Растение воздействует на окружающую среду разными способами, основные из них:

· ризофильтрация - корни всасывают воду и химические элементы необходимые для жизнедеятельности растений;

· фитоэкстракция - накопление в организме растения опасных загрязнений (например, тяжёлых металлов );

· фитоволатилизация - испарение воды и летучих химических элементов (As, Se) листьями растений;

· фитотрансформация:

1. фитостабилизация - перевод химических соединений в менее подвижную и активную форму (снижает риск распространения загрязнений);

2. фитодеградация - деградация растениями и симбиотическими микроорганизмами органической части загрязнений;

· фитостимуляция - стимуляция развития симбиотических микроорганизмов, принимающих участие в процессе очистки. Главную роль в деградации загрязнений играют микроорганизмы. Растение является своего рода биофильтром, создавая для них среду обитания (обеспечение доступа кислорода, разрыхление грунта. В связи с этим, процесс очистки происходит также вне периода вегетации (в нелетний период) с несколько сниженной активностью.

Ухудшающиеся экологические условия оказывают негативное влияние на почву — вследствие загрязнения снижается урожайность и проявляется токсичный эффект.

Благодаря самоочищению почвы происходит постепенное удаление вредных веществ, однако этот процесс занимает достаточно длительное время, а кроме того, скорость процессов загрязнения в техногенной среде ощутимо превышает скорость процессов самоочищения.

Поэтому активно применяются методы искусственного очищения почвы.

Для очистки почвы от загрязнения разработаны различные технологические методы, и регулярно внедряются новые. В первую очередь следует использовать для очистки почвы наиболее экологические и безопасные способы, не забывая про эффективность и финансовые затраты.

Методы очистки почвы

Если рассматривать способы очистки загрязненной почвы, то можно разделить их по принципу действия на следующие категории:

  • химические методы очистки.
  • физические методы очистки.
  • биологические методы очистки.

Физические методы очистки почвы

1) Электрохимическая очистка.

Применяется для удаления из почвы хлорсодержащих углеводородов, различных нефтепродуктов, фенолов. На чем основана работа метода электрохимической очистки? В процессе движения электрического тока сквозь почву осуществляется электролиз воды, электрокоагуляция, реакции электрохимического окисления и электрофлотации. Степень окисления фенола находится в пределах от 70 до 90 процентов.

Качественный уровень обеззараживания почвы при электрохимической очистке приближается к ста процентам (минимальный показатель — 95%). Метод позволяет удалять из почвы также такие вредные элементы как ртуть, свинец, мышьяк, кадмий, цианиды и др.

К минусам метода можно отнести достаточно высокую стоимость (100-250$ за 1 м³ почвы).

2) Электрокинетическая очистка.

Используется для очищения почвы от цианидов, нефти и производных нефти, тяжелых металлов, цианидов, хлористых органических элементов. Типы почв, к которым может успешно применяться электрокинетическая очистка — глинистые и суглинистые, насыщенные влагой частично или полностью.

Технология основана на применении таких процессов как электрофорез и электроосмос. Уровень контроля и воздействия на процессы очищения почвы достаточно высокий. Для использования метода требуется применение химических реактивов или растворов поверхностно-активных веществ.

Эффективность электрокинетической очистки почвы составляет от 80 до 99 процентов. Стоимость несколько ниже чем при электрохимической очистке (100-170$ за 1 м³ почвы).

Химические методы очистки почвы

1) Метод промывки.

Технологии химической очистки почвы подразумевают использование растворов поверхностно-активных веществ или сильные окислители (активный кислород и хлор, щелочные растворы). В основном метод применяется с целью очистки почвы от нефти. Эффективность при методе промывки составляет до 99%.

После того как почва очищена, можно проводить ее рекультивацию.

Из минусов химических методов очистки почвы можно отметить длительные сроки (1-4 года в среднем) и значительное количество загрязненной воды, которую тоже приходится очищать перед выбросом в окружающую среду.

Биологические методы очистки почвы

1) Фитоэкстракция.

Технология очистки засоренных вредными веществами почв методом фитоэкстракции — это выращивание определенных видов растений на загрязненных участках грунта.

Фитоэкстракция демонстрирует хорошие результаты при очистке почвы от медных, цинковых и никелевых соединений, а также кобальта, свинца, марганца, цинка и хрома. Для удаления подавляющего количества указанных элементов из почвы, нужно обеспечить несколько циклов растительных культур.

По окончании процесса фитоэкстракции растения следует собрать и сжечь. Полученный после сжигания пепел считается вредными отходами и подлежит утилизации.

Еще один биологический метод — целенаправленное усиление активности специфической микрофлоры почвы, которая занимается разложением нефти. Также, допустимо добавление определенных микробных культур в почву.

В результате создаются благоприятные условия для микроорганизмов, которые осуществляют утилизацию нефтепродуктов и нефти.
Не менее интересная статья также есть на нашем сайте (прочитано — 7 746 раз)

Поступление тяжелых металлов в растение регулируется органическим веществом почвы. При взаимодействии ТМ с органической составляющей почвы образуются соли гуминовых кислот, металлы вовлекаются в малоподвижные (плохо доступные растениям) комплексные соединения. Происходит процесс нейтрализации токсичных ТМ, поступающих в почву, поэтому существенное влияние на способность почвы к самоочищению оказывает прочность связей ТМ - органическое вещество почвы (Соколов, Черников, 2008).

Наземные экосистемы, в частности почва, являются основной производительной силой промышленного сырья и продуктов питания для человека. Качественная продукция не должна содержать токсические концентрации ТМ. Такую продукцию можно получить, возделывая культуры только на почвах с нормальным содержанием этих элементов.

Почвы, содержащие ТМ в количествах превышающих ПДК, требуют обязательной детоксикации. Мероприятия по приведению ТМ в загрязненных почвах к фоновым концентрациям крайне необходимы как для оздоровления почвенного покрова и получения качественной аграрной продукции, так и для предотвращения загрязнения ТМ грунтовых вод, которое происходит в результате миграции ТМ вниз по почвенному профилю (Соколов, Черников, 2008; Постников, 2009).

Разработки способов детоксикации загрязненных ТМ почв ведутся давно. В.А. Королёв пишет: «Все методы очистки грунтов можно разделить на три группы:

  • 1) методы удаления (изъятия) токсичных соединений из грунта (промывка, экстракция и выщелачивание, электрохимическое и электрокинетическое удаление);
  • 2) методы локализации (закрепления) токсикантов в пределах почвенного горизонта (механические защитные экраны (барьеры), химическая иммобилизация);
  • 3) методы деструкции загрязнений (подавления токсичности) в массиве грунта (газовая и химическая нейтрализация, гидролитическое разложение, окисление, микробиологическая деструкция)» (Королёв, 2001).

Д.С. Орлов выделяет три группы методов очистки и обезвреживания почв от загрязнений ТМ: механические, химические и агротехнические (Орлов, Васильевская, 1994).

Технология электрохимического метода очистки загрязненных тяжелыми металлами почв основана на переносе ТМ под действием постоянного электрического поля, первостепенную роль при этом играют процессы электроосмоса и электрофореза. При применении электрокинетической технологии представляется возможным с достаточной точностью контролировать и управлять процессами очистки, что является явным преимуществом данного метода. Силовые линии электрического поля перемещают тяжелые металлы в ходе процесса очистки и распределяют их по расположению электрода, причем скорость процесса регулируется напряженностью поля.

Электроды устанавливаются в почве на расстоянии 2-5 метров друг от друга и погружаются на глубину 2 метров. В зависимости от природы извлекаемого токсиканта устанавливаются следующие параметры электрокинетиче- ского процесса: напряженность поля, плотность тока, напряжение на электродах. Исходные концентрации контоминантов в почвах могут быть уменьшены в 5-10 раз. Эффективность очистки достаточно высокая (около 90 %), но такие показатели очистки достигаются только при применении химических реагентов или растворов поверхностно активных веществ. Стоимость электрокинетической очистки почв довольно высока и составляет 130-150 долларов США за 1 м 3 (Новиков).

Химическая детоксикация почв основана на химическом осаждении ТМ в результате помещения токсичной почвы в реактор с реакционно-способной смесью (100 мг/кг сероводорода в азоте, известь, сульфат натрия, оксиды железа, органический углерод). Преимущества данной технологии в том, что она применима для почв с различными физико-химическими свойствами. Эффективность способа зависит от рационально подобранного взаимодействия реа- гент-экотоксикант. В результате обработки почвы реакционной смесью возможна фиксация 90% ТМ. Явным недостатком является то, что почву невозможно очистить на месте, требуется ее сбор и перемещение в реактор.

Существуют так же химические методы очистки загрязненных ТМ почв, позволяющие вносить реакционную смесь непосредственно на загрязненную площадь, при этом пахотный слой очищаемой почвы не оказывает значительного влияния на функционирование экосистемы в целом.

Одним из таких методов является способ очистки черноземов от тяжелых металлов, который отличается тем, что в качестве сорбирующей реагентной смеси применяется органоминеральный компост. При приготовлении компоста смешиваются следующие реагенты: перегной крупнорогатого скота, фосфо- гипс, суперфосфат простой. Сочетание данных компонентов зависит от уровня содержания щелочных металлов и должно соответствовать следующим долям в % от общей массы:

  • фосфогипс 10,0-15,0;
  • суперфосфат простой 0,8-1,0;
  • перегной крупнорогатого скота 84,0-89,2.

Доза внесения смеси составляет 100-110 т/га. Необходимым параметром является содержание в смеси органического вещества - около 20 % с реакцией среды (pH) 6,0-6,5. Полученную реагентную смесь заделывают в почву культиваторами на глубину 0,25 м. По истечении 4-5 лет внесение органоминерального компоста в почву повторяют снова (Патент РФ № 2492944, 2013).

Данный метод обладает спектром недостатков. Способ не решает проблему удаления поллютантов из почв, а лишь на время (4-5 лет) переводит подвижные формы ТМ в почве в труднодоступные для растений. Также происходит снижение активности всех микроэлементов, что негативно сказывается на плодородии почвы. Наиболее явным и основным недостатком химического метода очистки по сравнению с другими является внесение вторичных загрязнителей в очищаемую почву. В состав реакционных смесей, применяемых в процессе ремедиации, входят различные химикаты, которые аккумулируются почвенным покровом и могут вызвать вторичное загрязнение поллютантами другой природы.

Биологические методы очистки почв, а в частности фиторемедиация, в некоторой мере решают две основные проблемы: они более экономичны и не требуют внесения в почву специальных смесей, растворов, реагентов (вторичные загрязнители отсутствуют). В последнее время все чаще используются способы восстановления экосистем при помощи живых растений. Ученые считают перспективным применение растений в целях очистки почв от ТМ и радионуклидов (Ebbs et al, 2008; Kramer, 2000).

Фиторемедиация представляет собой выращивание в течение установленного временного периода на загрязненном участке специально подобранных видов растений-гипераккумуляторов, накапливающих тяжелые металлы корневой системой и переносящих их в надземную биомассу (Квеситадзе и др., 2005; Титов и др., 2007; Chaney et al., 1997, Salt, et al., 1998). При подборке растений- ремедиаторов основополагающую роль играет аккумулирующая способность по отношению к тяжелым металлам (Прасад, 2003; Квеситадзе и др., 2005; Титов и др., 2007). По способности накапливать ТМ все растения условно делят на:

  • гипераккумуляторы - растения, способные выживать в почвах с высоким содержанием токсикантов (ТМ) и сорбировать их в большом количестве в своих органах за счет защитных физиологических механизмов к избытку ТМ;
  • аккумуляторы - растения, способные накапливать металлы в больших количествах в надземной биомассе при невысоком их содержании в почве;
  • индикаторы - растения, накапливающие ТМ таким образом, что содержание металла в растении равно его содержанию в экотопе;
  • исключители (эксклюдеры) - устойчивые к ТМ растения, которые сохраняют низкую концентрацию ТМ в побегах при высоком уровне загрязнения экотопа (Baker, 1981; Antosiewicz, 1992; Saraswat, Rai, 2009).

Термин «гипераккумулятор» был предложен Чейни (Chaney, 1983, 1997) для обозначения растений, накапливающих свыше 1000 мг/кг абсолютно сухой массы РЬ, 10 000 - Zn; 100 - Cd (Титов и др., 2007). Умеренными аккумуляторами называют растения, в органах которых концентрации тяжелых металлов довольно высокие, но не достигают установленного порога (Титов и др., 2007).

Так же принято считать, что растения, у которых транслокационный фактор или коэффициент транслокации (отношение содержания металла в побегах к его содержанию в корнях) больше единицы, являются гипеаккумуляторами, в то время как не являющиеся гипераккумуляторами растения имеют более высокое содержание металла в корнях, чем в побегах (Титов и др., 2007).

A.J.M. Baker пишет: «У металлофитов имеются значительные различия как в накоплении тяжелых металлов, так и в концентрациях ТМ, переносимых ими, а так же явно отличаются пороги токсичности. Но все же существуют растения, у которых концентрации тяжелых металлов в побегах существенно превосходят токсичные. Такие растения при выращивании на загрязненных почвах накапливают ТМ в своих надземных органах значительно больше, нежели обычные растения, произрастающие в этом же месте» (Baker, 1994).

ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК, 2008, том 78, № 3, с. 247-249

ИЗ РАБОЧЕЙ ТЕТРАДИ ИССЛЕДОВАТЕЛЯ

Статья посвящена описанию простого в исполнении и щадящего почву способа её очистки от тяжёлых металлов - фитоэкстракции, заключающейся в посеве и выращивании в течение определённого периода времени специально подобранных видов сельскохозяйственных растений на загрязнённых участках для извлечения из почвы металлов корневой системой и накопления их в надземной биомассе.

Р. В. Галиулин, Р. А. Галиулина

Тяжёлые металлы представляют собой большую группу химических элементов с атомной массой более 50 у.е. В почву они попадают различными путями: в составе газопылевых выбросов, атмосферных осадков, поливных вод, загрязнённых промышленными стоками и т.д. Человек может получить "свою долю" тяжёлых металлов не только напрямую с вдыхаемым воздухом и почвенной пылью, но и через продукты питания, производимые на загрязнённых сельскохозяйственных угодьях. Пагубное влияние тяжёлых металлов на человека состоит в том, что ряд их соединений характеризуется высокой токсичностью и канцерогенностью. Особенно опасны выбросы металлургических производств, вызывающие повышение заболеваемости и смертности от злокачественных новообразований, среди которых первое место занимает рак лёгких . В этой связи проблема очистки почв от тяжёлых металлов становится актуальной для территорий так называемых экологически неблагополучных регионов, к числу которых можно отнести Челя-

Авторы работают в Институте фундаментальных проблем биологии РАН. ГАЛИУЛИН Рауф Валиевич -доктор географических наук, ведущий научный сотрудник лаборатории функциональной экологии. ГА-ЛИУЛИНА Роза Адхамовна - научный сотрудник той же лаборатории.

бинскую область. Этот регион занимает одно из ведущих мест в стране по концентрации промышленного производства. Загрязнение воздушного бассейна и территорий вокруг предприятий чёрной металлургии достигает десятков километров . По данным космических съёмок, техногенное загрязнение земель области тяжёлыми металлами охватывает 29.5 тыс. км2 при её общей площади 87.9 тыс. км2.

Между тем известны различные способы очистки почв от тяжёлых металлов, среди которых особый интерес вызывает фитоэкстракция . Она заключается в посеве и выращивании в течение определённого периода времени на загрязнённых участках специально подобранных видов сельскохозяйственных растений для извлечения из почвы тяжёлых металлов корневой системой и накопления их в надземной биомассе, в последующем утилизируемой. При этом коэффициент накопления металлов в растениях повышают благодаря внесению в почву эффекторов фитоэкстракции. Данная технология считается простой в исполнении, щадящей почву и экономически целесообразной по сравнению с механическими и физико-химическими подходами. Так, механические способы связаны со срезанием наиболее загрязнённого поверхностного слоя и его размещением на свалках (секвестрирование), или перемешиванием с менее загрязнёнными глубже лежащими слоями почвы посредством плантажной вспашки (разбавление), или покрытием его "привозной" чистой почвой (землевание). Физико-химические методы очистки основаны на промывке почвы специальными реагентами для извлечения из неё тяжёлых металлов (хемоэкстракция) или её очистки посредством воздействия на загрязнённый слой постоянного электрического тока через электроды (электрокинетическая ремедиация).

Как показывают наблюдения, для фитоэкстракции лучше использовать специально подобранные виды сельскохозяйственных растений, чем растения-гипераккумуляторы из числа диких

ГАЛИУЛИН, ГАЛИУЛИНА

видов, таких как ярутка синеватая (Thlaspi caer-ulescens), бурачок стенный (Alyssum murale), резуха Галлера (Cardaminopsis halleri) и др. Они хотя и накапливают в десятки раз больше металлов, чем другие растения, но отличаются низкой скоростью роста и небольшой надземной биомассой. Между тем фитоэкстракция, как и любой другой подход к очистке почвы, имеет ряд своих особенностей.

Содержание тяжёлых металлов в почве загрязнённого участка должно быть приемлемым для растений, то есть не вызывать у всходов выраженных фитотоксических симптомов (обесцвечивание, пигментация и пожелтение листьев, задержка роста и др.), что будет характеризовать их толерантность к тяжёлым металлам и одновременно способность поглощать последние корневой системой и перемещать в надземную биомассу за счёт потока, создаваемого испарением воды листовой поверхностью растений.

Растения, используемые для очистки почвы, должны отличаться высокой скоростью роста и производить большую надземную биомассу, иметь глубоко разрастающуюся корневую систему, высокую сопротивляемость к болезням и вредителям, быть отзывчивыми к обычной агротехнике, удобными для уборки и непривлекательными для домашних и диких животных, чтобы не вызывать случаи отравления насыщенной тяжёлыми металлами надземной биомассой.

Для повышения накопления в растениях тяжёлых металлов необходимо применять так называемые эффекторы фитоэкстракции в виде комплек-сонов из числа полиаминополиуксусных кислот, таких как этилендиаминтетрауксусная (ЭДТА), дигидроксиэтилэтилендиаминдиуксусная (Д ДД А), диэтилентриаминпентауксусная (ДТПА), этилен-бис(оксиэтил ентриамин)тетрауксусная (ЭТТА), этилендиаминдигидроксифенилуксусная (Э ДФ А), циклогексан-транс -1,2-диаминтетрауксусная (ЦДТА) и др. Эти вещества способны образовывать прочные водорастворимые внутрикомплекс-ные соединения со многими металлами, повышать растворимость, подвижность металлов в почве, а следовательно, их поглощение корневой системой и накопление в надземной биомассе. Обычно эффекторы фитоэкстракции в виде водных растворов их солей вносят под растения в фазу достижения ими максимальной надземной биомассы. Данный приём позволяет производить кратный посев и возделывание растений в течение одного вегетационного сезона, а значит, сократить время очистки почв от тяжёлых металлов. Необходимо также отметить, что при внесении эффекторов фитоэкстракции в почву надо избегать дождливых дней для уменьшения риска загрязнения грунтовых вод тяжёлыми металлами вследствие

возрастания их содержания в почвенном растворе и миграции по почвенному профилю.

Очистку почвы от тяжёлых металлов необходимо проводить вплоть до достижения соответствующих санитарно-гигиенических нормативов, то есть предельно допустимых концентраций (ПДК) или ориентировочно допустимых концентраций (ОДК). При этом экономически целесообразным для фитоэкстракции считается период продолжительностью 5-10 лет. Завершающим этапом фитоэкстракции является жатва, сбор и утилизация загрязнённой тяжёлыми металлами надземной биомассы растений, так как уборка всей корневой биомассы, первоначально насыщаемой тяжёлыми металлами, практически невозможна. Надземная биомасса растений в дальнейшем может быть использована для извлечения из неё цветных металлов путем её предварительного высушивания, озоления и последующей специальной обработки.

О перспективности приведённого выше способа очистки почв от тяжёлых металлов свидетельствуют результаты вегетационного опыта с горчицей сизой, или сарептской (Brassica juncea), и выщелоченным чернозёмом из сельскохозяйственного угодья в окрестностях Челябинска. Данный вид горчицы широко используется в практике очистки почв от тяжёлых металлов. В опыте моделировалась ситуация, связанная с накоплением меди и никеля в течение нескольких лет в почве участка, находящегося в зоне влияния предприятий металлургии и энергетики Челябинска. Выбор этих металлов для опыта не случаен, так как медь и никель наряду с хромом, цинком, свинцом и кадмием относятся к основным загрязнителям почв в мире. Почву обрабатывали водными растворами солей меди и никеля в количествах по 100 мг/кг, затем производили посев семян горчицы и наблюдали за ростом и развитием растений в течение нескольких недель. По достижении горчицей максимальной надземной биомассы под растения вносили наиболее часто применяемый на практике эффектор фитоэкстракции ЭДТА в виде водного раствора её натриевой соли в дозах от 1 до 10 ммоль/кг. Спустя неделю надземную биомассу горчицы срезали, высушивали, анализировали содержание меди и никеля в ней. Как оказалось, с увеличением дозы ЭДТА коэффициенты накопления тяжёлых металлов, то есть отношения содержания металлов в растении и почве (потенциал очистки почвы) возрастали относительно контроля (без внесения ЭДТА) для меди в 2.8-43.6 раза, для никеля - 1.8-25.3 раза (табл. 1).

Расчёты, проведённые с использованием экспоненциальной зависимости, показали, что кратность посева и выращивания горчицы с применением эффектора фитоэкстракции значительно сокращает время очистки почвы от тяжёлых ме-

ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК том 78 < 3 2008

ОЧИСТКА ПОЧВ ОТ ТЯЖЁЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ РАСТЕНИЙ

Таблица 1. Значения коэффициентов накопления меди и никеля для горчицы сизой (отношения содержания металлов в растении и почве) в зависимости от доз ЭДТА, внесённых в почву

Cu и Ni, по 100 мг/кг 0.09 0.21

То же + ЭДТА, 1 ммоль/кг 0.25 0.37

» , 5 ммоль/кг 1.20 2.51

» , 10 ммоль/кг 3.92 5.32

Коэффициент накопления

Таблица 2. Время достижения исходной фоновой концентрации меди (31.6 мг/кг) и никеля (63.5 мг/кг) в почве при кратном посеве и выращивании горчицы сизой в течение одного вегетационного сезона и внесении ЭДТА

Вариант однократный двукратный

Cu и Ni, по 100 мг/кг 14.9 22.5 7.4 11.3

То же + ЭДТА, 1 ммоль/кг 7.4 8.8 3.7 4.4

» , 5 ммоль/кг 6.6 7.9 3.3 3.9

» , 10 ммоль/кг 5.8 6.9 2.9 3.4

В заключение хотелось бы отметить, что насущной задачей сегодняшнего дня является реализация данного способа для планомерного возвращения дефицитных пахотных земель в севообороты после их очистки с помощью растений на территориях экологически неблагополучных регионов. Без сомнения, крупномасштабное осуществление фитоэкстракции, как и любого другого способа очистки почв, имеет смысл при условии прекращения массированного техногенного загрязнения земель тяжё

ГАЛИУЛИН Р.В., ГАЛИУЛИНА Р.А. - 2012 г.

  • ИСПОЛЬЗОВАНИЕ ГОРЧИЦЫ САРЕПТСКОЙ BRASSICA JUNCEA (L.) В ЦЕЛЯХ ОЧИСТКИ ПОЧВ КУРСКОЙ ОБЛАСТИ ОТ ЗАГРЯЗНЕНИЙ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

    БАЛАБИНА И.П., НЕВЕДРОВ Н.П., ПРОЦЕНКО Е.П., ПРУСАЧЕНКО А.В. - 2013 г.